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Data are presented on the fatigue characteristics in the life

R

between approximately 10 and 106 cycles for a large number of materialsg
!,

including steels, aluminum, titanium, beryllium, and high temperature

alloys. Both cyclic straln hardening and strain softening materials 5 g
X . A= oo
were investigated. Linear relationships were found when elastic a

-
strain range and the plastic strain range were plotted on log-log g s
i
© coordinates against life. The model selected for representing fatigue.:;is_ -
e
o, W‘
characteristics consists of a plot of life versus total strain range a4

which is the sum of elastic and the plastic components. In the low
cycle range, the plastic strain range predominates and in the high cycle
range the elastic straln range predominates. Empirical relations have
been developed for predicting both the elastic and plastic lines from
data obtainable in the conventional tensile test. The validity of these
predictions is demonstrated by experimental data on a number of loys
Jitte
INTRODUCTION

A conslderable interest exists at the present time in low cycle
fatigue, this interest arising because of the many applications which
involve design for finite life. That low cycle fatigue is governed by
cyclic plastic strain range has been shown by numerous investigators,
and the power law relation between life and plastic straln range as pro-
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posed by Manson and Coffin has been amply verified. However, before this
relation can be applied it 1s necessary to determine the cyeclic plastic
strain range. While in many applications the total strain range may be
known, or experimentally determined, separation of the total strain range
into its elastic and plastic components may involve some difficulty. For
most materials, life above 1000 cycles involves appreciable elastic
strain, At about 10,000 cycles the elastic and plastic strain ranges are
at about the same order of magnitude, and above 100,000 cycles the plas-
tic strain range is negligible compared to the elastic strain range. In
fact, for some very strong materials the elastic strain range may start
to predominate at lives of about 100 cycles or less. Thus, although
plastic strain range may govern life, the elastic strain range assumes
considerable importance in the intermediate cycle life range, either
because 1t is needed in order to compute the plastic strain, or because
it is the larger component and may therefore be a better measure of the
life than the plastlc strain.

Based on limited data available in 1960 it has been proposed
(ref. 1b) that the elastic component of the strain range would also sat-
isfy a power law relationship with cyeclic life, similar to that existing
between plastic strain range and cyclic life. Experimental verification
of such relationships were subsequently shown (ref. 2) for sixteen mate-
rials of various composition and heat treatment. Thus, it has been
fairly extensively verified that life is governed by the total strain
range, consigting of an elastic and a plastic component, each of which

produces a straight line when plotted against life on log-log coordinates.
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Because of this linearity, relatively few experimental data are
needed to characterize the fatigue behavior of a material in the low and
Intermediate cyclic life range between approximately 10 and lO6 cycles.
However, there are applications in which it is desired to estimate the
life in advance of fatigue experimentation.

The avallability of the large amount of fatigue data in reference 2,
and additional data generated since the publication of that report, has
made possible the undertaking of an empirical correlation approach for
estimating both the elastic and plastic strain range components from
static tensile properties alone.

The obJject of this report is to review the data and verify the pre-
viously proposed assumptions that these data can accurately be repre-
sented by straight lines in the life range of 10 to 108 cycles and to
develop a method of predicting these stralght lines from simple tensile
data.

By comparing the tensile properties of over twenty materials with
selected points on their fatigue curves represented in the form of 1life
versus elastic and plastic strain ranges, an approach has been found
whereby the static tensile properties can be used to predict the fatigue
properties. Checks on the validity of the method are made by comparing
the predictions of the method with experimental results for the materials
used to obtain the correlation and for six materials tested after the
correlation was developed. A comparison is also presented between the
experimental resulls and those predicted by a method recently proposed by

Langer (ref. 3), and later studied by Tavernelli and Coffin (ref. 4).
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EXPERIMENTALLY DETERMINED STRAIN-CYCLING BEHAVIOR OF MATERIALS

The baslc equations of any stress analysis are the equilibrium equa-
tions involving stresses, and the compatibility equations involving total
strains. Thus, it is the interrelation between the stresses and total
strains that is required to solve these equations. For many applications
involving cyclic straining, the relation between stress range and total
strain range, along with some life relation, will be required for the
solution of the problem (ref. 1). Once the stress and strain distribu-
tions are determined, it then becomes possible to make some estimate of
the cyclic life of the structure. It is found desirable, before deriving
the relation between stress range and total strain range, to separate the
total strain range into its elastic and plastic components, and to
express each of these components in terms of cyelic life.

Relation between plastic strain range and cyelic life.

If a plot is made on logarithmic coordinates of the plastic strain
range AmP versus the number of cycles to failure Ne, the result is
found to be very nearly a straight line. Thus the cyclic life is related
to the cyclic plastic strain range by a power law in the form

Aey, = MNfZ (1)
where M and =z are material constants.

Equation (1) was first proposed by Manson (ref. 5 and 6) on the
basis of limited experimental data by Sachs and his co-workers (ref. 7).
The exponent, z, was suggested as a variable, differing among materials.
For the aluminum alloy on which the data were available, Manson suggested

a value of 7z = -1/3. An improved analysis of the data was later made by




Coffin (ref. 8), who found that z = -1/2 provided a better representa-
tion of the data, and who also suggested that this value of 2z is
applicable to all materials. In more recent work (ref. 2), the authors
found that equation (1) was valid but that =z appeared to be a material
constant rather than a universal constant. Equation (1), therefore,
represents a relation that has been proven valid by a number of inves-
tigators, and for a large number of materials.

Relation between elastic strain range and cyelic life.

When fatigue specimens are cycled between fixed strain limits, the
stress range generally changes during the test. If the stress range
Increases with cycles, the material is called a cyeclic strain hardening
one, and if the stress range decreases with cyeles, 1t is called cyclie
strain softening. As was shown In reference 2, the most significant
changes in stress range for many materials occurred within the first
20 percent of specimen life. During the remaining 80 percent or more
of the 1ife, the stress range remained relatively constant. This value
of stress range is then considered as a characteristic value correspond-
ing to the applied strain range. For the purpose of analysis the stress
range measured at one half the number of cycles to failure was selected
as the characteristic value, and subsequently referred to as the
asymptotic stress range Ac.

For a large number of materials tested, it was found that plots of
this stress range (or by dividing it by the elastic modulus and calling
1t an elastic strain range) versus the cyclic life, on logarithmic

coordinates result in reasonably straight lines (refs. 1b and 2). Thus



the cyclic life may be assumed to be related to the elastic strain range
by a power law in the form

Ney = Ac/E = (G/E) NfY (2)

where Aeel is the cyelic elastic strain range corresponding to the
cyclic life Nf, E 1is the elastic modulus, and G and y are other
material constants.

Although equation (2) adequately represents the characteristic
behavior of a large number of materilals for engineering use, it is
admittedly only an approximation of the true material behavior. For
practical purposes, however, it can be regarded as valid in the life
range of usual interest, up to lO6 cycles, and in many cases up to
even higher lives.

Alternate elastic relation involving an endurance limit.

Equation (2) implies that the life increases with a decrease in
elastic strain since the exponent ¢ 1is always negative and thus for any
elastic strain, corresponding to an applied stress, will predict a finite
life. 1In reality, it i1s well recognized that many materials exhibit an
endurance limit; that is, a stress level below which the 1ife becomes
essentially infinite. If it does not become infinite, at least it
increases to a greater extent than is implied by equation (2). In order
to take cognizance of the possibility of the existence of an endurance
limit, the following derivation is made:

Let it be assumed that the asymptotic stress range-strain range
relation coinecides with the elastic line up to a eritical stress range,

thus implying that until this stress range 1s reached, no plastic flow



will take place. Since, according to equation (1), finite life occurs
only if plastic flow develops, the life will be infinite if the stress
range 1s maintained below this critical level. By definition, then, this
stress amplitude then becomes the endurance limit, Oopgs &nd the stress
range associated with this critical stress is zaend'
For stress ranges above zcend plastic flow occurs, and the life
becomes governed by the plastic flow according to equation (1). As a
first approximation, let it be assumed that the familiar power law rela-
tion exists between the plastic flow and the stress range causing it.

That is

d
Dey = AlAo - 20 4) (3)

Substituting in equation (3) the value of Aep from equation (1), and

solving for Acg

e \1/d w\L/d  z/d
As = 20 +Hl—E2 =20 .+ (% N (4)
end A end A T
Or, dividing by the elastic modulus to obtain the relation in terms of
strain
ne Do 20,4 L1 (n 1/d Nfz/d (5)
el " E = E E \A

Equation (5) also relates the elastic strain range as a power law in
terms of the cyclic life, but 1t includes an endurance limit term in
contrast to equation (2). In principle, therefore, equation (5) is a
much more satisfactory relation, capable of accommodating the concept of
an endurance limit. For the numerical purposes associated with many
practical problems, it can be shown, however, that the differences in-

volved between the two equations are relatively small.



It 1s also apparent, from equation (3), that the endurance limit
enters directly into the relation between stress range and plastic strain
range and this eguation might, therefore, alsoc be used directly to deter-
mine the endurance 1limit, without introducing the cyclic life. Thus from
equation (3)

/a

1
Ao = 2o+ (Aep/A) (6)

nd

The authors have attempted to determine whether equations (5) or (6)
could be used on fatigue data to determine reliable values of endurance
limits. Some of the results are shown in the appendix. It was concluded
that for even hypothetical sets of data; that is, data with bullt-in
scatter less than that obtained from actual test data, the method re-

versus N show

quires data at high cyeclic life, where plots of Aﬁe £

1
distincet curvature, in order to determine a clearly defined endurance
limit. In the absence of such data, equation (2) can be assumed to
represent the data adequately in the low and intermediate cycle 1life
range (for most materials up to lO6 cycles). Because of the simplicity
of equation (2), it is used in the remainder of the discussion, with the
recognition that it is an approximation that implies the non-existence
of an endurance 1limit (infinite life), but in practice is not inconsist-
ent in representing data in the life range of interest (usually below
lO6 cycles) even for cases involving endurance limits. For materials
that demonstrate distinet curvature in plots of Aeel versus N_ at
lives well below lO6 cycles, there is no difficulty in replacing egua-

tion (2) by its equivalent, equation (5), wherever the former appears

in the discussions to follow.



Relation between total straln range and cyclic life.

Since for many applications it is the total strain range that is of
interest, rather than eilther the plastic or elastic component, equa-

tions (1) and (2) can be combined to obtain the desired sum

z T
Ae=Aep+%=MNf+%Nf (7)

This equation will be used in the remainder of this report as the basic
relation between cyclic life and total strain range. Figure 1 shows
schematically the graphical implications of equation (7). Plotted
against cyecllic life on log-log coordinates, both components produce
stralght lines. Because the strain scale is logarithmic their sum is,
however, not a straight line. It can be seen that in the low life range,
the elastic component is almost negligible compared to the plastic com-
ponent. The total strain range, Ae¢, thus almost coincides completely
with the straight line for the plastic component. At the higher cyclic
lives, however, the plastic strain range rapidly becomes negligible,
while the elastic strain range retains a relatively high value because
of the lower slope of the Aﬁel line. Thus, the Ae curve approaches
tangency to the elastic line. The cross-over point between the two
curves is, for most materials, in the viecinity of lO4 cycles. Thus, if
life ranges of less than 1000 cycles are involved, it is usually per-
missible to neglect consideration of the elastic component. On the other
hand, if the problem involves lives in the viecinity of 100,000 cycles,
the strain of major interest is the elastic strain range (or, equiva-

lently, the stress range). Basically, it 1s probably still localized
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plastic flow that induces fatigue, even at the very high lives, but meas-
urement of the plastlc flow is difficult, and the stress range apparently
becomes an adequate measure of this localized plastic flow.

One final point can be made in connection with figure 1 that is of
practical interest in the experimental determination of material behavior.
It can be seen that if the elastic and plastic lines are to be determined
by measurement, the plastic line should be accurately determined in the
low-cycle range, where 1t produces its greatest influence; whereas the
elastic line should be most accurately determined in the high-cycle range.
Thus, 1f compromises have to be made in fairing curves to "linearize"
them, the range of most significant influence should be favored. This
was done 1n the analysis shown in this report and when analyzing the data
in reference 2.

ggﬁECT DETERMINATION OF STRESS-STRAIN-LIFE RELATIONS

In the discussions to follow, two approaches will be indicated which
can be used to determine the inter-relations among stress range, strain
range, and cyclic life. As already indicated, the types of relations
sought will be those that are based on equation (1) in conjunction with
equation (2) instead of the (probably) more realistic equation (5) which
includes an endurance limit. More accurate results could be obtained at
the expense of additional experimental data. The approach is based
entirely on data obtained in fatigue tests.

Measurement of constants.

In the most general sense the constants M, 2z, G, and y must be

regarded as properties which vary from material to material, and which
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can best be determined experimentally from strain cycling tests. Al-
though there are four constants they are, in principle, determinable from
tests at only two fixed total strain range levels for which the measured
quantities are stress range and 1life. From the stresg réinge, the elastic
strain range may be determined, using the elastic modulus. A logarithmic
plot of elastic strain range versus life 1s then constructed from which

G and y can be determined. Subtraction of elastic straln range from
total straln range provides the plastic strain range which can be plotted
logarithmlcally against life. Such a plot permits calculation of M

and z. If, for example, the applied straln ranges are Aﬁl and AQe,,
the corresponding measured stress ranges Aol and Ag,, while the

cyclic lives are Nl and N2 respectively, the constants become

log (Acrl) - log (Acz)

r= log Nl - log l\I2
i} -r Y
G = AmiNi or A02N2
(8)
3 o 5
l "-—-—-—-l T ————
Yo 2 g o8 \2¢, - 3
log Nl - log N2
Awl -z Auz -7
M={be - ) N = {bez-—F N,

Obviously, an improvement in the determination of the constants can be
achleved by testing at more than two strain levels. The optimum straight
lines are then drawn fhrough the available data points either by inspec-

tion or by least square procedures. The constants can then be determined
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according to equation (8), using any two points on the optimlzed straight
lines, rather than any individual experimental data points.

Also, as already indicated, the most desirable region in which to
determine the plastic straln range constants, M and 2z, 1is the range
of low cyelic life, whereas the most desirable region for determination
of the elastic strain range constants, G and ¥y, is that at high
cyclic 1life. The most accurate determination of the constants will thus
occur if the entire life range of interest is covered in the tests. In
principle, however, relatively few tests, as low as two, are needed to
determine all four constants.

Relatlon between stress range and strain range.

The principal need in design calculations is for a relation between
stress range and strain range. Such a relation provides a means of com~
bining the equilibrium equations involving stresses, and the compati-
bility equations involving strains. Eliminating Nf between equations
(1) and (2), and combining with equation (7), results in

N z/y
ne =42 M(%z> (9)

In equation (9) the stress range 1s designated Ag, but it is to be
understood that when it is measured experimentally in a cyelic strain
range test, during which the stress range may vary continuously, it will
be taken as the value at the half-life. Since for most materials and
strain ranges, the stress range has essentially stabilized at a constant
value by the time the half-life 1s reached, the stress range Ag has

already been referred to as the asymptotic stress range. Thus equa-

tion (9) represents essentially a relation between the total strain

range and the asymptotic stress range.
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It should be polnted out, moreover, that what is desired for analysis
1s a relation between stress range and total strain range in order to per-
mit inter-relation between the equilibrium and compatibility equations.

It 1s not necessary that the relation be expressible analytically, as in
equation (9), although the equation appears sultable for this purpose for
most of the materials examined to date. The relation could be expressed
completely graphically, as by a curve best passing through the data as

is usually done for a static stress-strain curve. No limitations are
imposed in the numerical analysls of specific problems by the use of a
graphical relatlion instead of an analytical expression.

SOME APPROXTMATE RELATTIONS

Although 1t is relatively simple to measure the cycllc stress strain
relation, and the life characteristics under strain cycling, specimens
and laboratory facilitles are not always available to obtain the neces-
sary data. Especially in the early stages of deslign, 1t is desirable to
be able to make estimates based on available data of the most limited
type. Thus approximate relations involving readily availlable data can
serve a very useful purpose, provided the 1limitations of these approxi-
mations are recognized. In the following sections some approximate
relations will be developed that may serve adeguately in preliminary
analysis. For the final analysis of a chosen design, it would appear
reasonable to expect that the actual properties of the material involved
wlll be determlned by test rather than relying on approximations.

The data used for determining the predicting parameters are shown

in filgures 2 through 17 and were taken from some earlier work of the
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authors (ref. 2) except that data points with cyelic lives less than

10 cycles were omitted from these plots. The approximate relations to be
developed are those that will best predict or represent the least square
elastic and plastic strains versus life lines (on log-log plots) for the
wide variety of materials tested. The least square lines used are the
"A" lines of figures 2 through 17. In calculating these lines, the fol-
lowing procedure was used: for the plastic line, the data points used
were those for which the plastic strain range was greater than half the
elastic strain range, while for the elastic line the data points used
were those for which the elastic strain range was greater than half the
plastic strain range. This was done, as was pointed out earlier, in
order to obtain the best fit of the data in the regions where they are
most significant.

It can be seen from figs. 7 and 14 that these two materials
(annealed 304 and AM 350 steels) gave very nonlinear trends in the
plastic data due to the fact that they are both basically unstable and
transform during cyeling. Thus, at each strain level, or life, a some-
what different material is being tested. For this reason, these two
materials (nos. 6 and 13) were omltted from plots made for the purpose of
determining the parameters for predicting the plastic strains. The
static tensile properties to be used in the following analysis are listed
in table I.

Parameters. - Before deriving any relations, it will be instruetive
to consider first the properties that enter into the approximations, and
the basis for thelr use.

Tensile ductility. - The tensile ductility is a property usually

available to the designer for any material likely to be of interest.
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Since the ductility 1s a plastic strain value, it would appear desirable
to make use of 1t in the plastic strain range-life equation (1). In the
discussion to follow ductility will be taken as the "true"™ or "logarithmic"

value, based on measurement of reduction in area in the tensile test. Thus
A5

D=1n+ = -ln (1 - R.A)) (13)
f

where D is the ductility, A.O and Af are the Initial and final areas

of the fracture cross-section in the tenslle test, and R.A. the conven-

tional reduction in area = Ay - Ap
L

Coffin (ref. 8) has proposed that the ductility be introduced into
the plastic strain range-life equation in such a manner that the plastic
strain range becomes equal to the ductility when the number of cycles is
equal to 1/4‘ The probable reasoning behind this suggestion stems from
the concept that a conventional tensile test constitutesone quarter of a
cyclic strain test in which the strain 1s completely reversed. If the
quarter-cycle constituting the tensile test were carried to completion as
part of a cyclic strain test, the load would first be reduced to zero in
the second quarter of the cyele, a compressive force applied during the
third quarter causing a compressive plastic flow, and a return to zero
load during the fourth quarter, placing the specimen in a position for
repetition of the strain cycle.

The manner of lncluding the tensile test as an extreme case of
eyclic plastic flow is, however, open to some question. Another form of

reasoning has been offered by Martin (ref. 9) who treated the problem of
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cumulative fatigue damage, and who arrived at a form of equation (1) such
thet the effective value of Ae 1s V2D at N, =1/4, while Manson
(ref. le) arrived at another effective value of Aﬁp of 1.5 D at

Nf = 1/4 cycle.

The problem of including the conventional tensile test as an extreme
of the cyclic test is, actually, only an academic question. In reality,
the tensile test is qulte different from the cyclic straining test. Thus,
the validity of considering the tensile test as a quarter, or some other
fraction of cyclic straining test would depend on the experimental deter-
mination of the consequences of the assumption, rather than on its theo-
retical significance. It is therefore lmportant to examine how well this
assumption is borne out for specific materials as a means of establishing

its validity. Figure 18 shows the relatlon between <A£P/D) versus D

1/4
for the materlals belng investigated. The data were obtained by deter-
mining the intercept of the least square: plastic lines at Nf = 1/4
(figures 2A through 17A). If the assumption that Aep =D at Np=1/4
were valid, all the points would lie on a horlzontal straight line
(AseP/D)l/4 = 1. Considerable deviation is seen to exist between this
agssumption and the data. A detailed analysls of the intercept of the
least square plastic lineSand other values of Nf was tried. It was
found that a much improved correlation could be obtained if the intercept
with the life of 10 cycles were used. This correlation is shown graphi-

cally in figure 19 and the curve shown representing the data is

(Ac.) =%D3_/4

p)10 (14)
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On the basis of this figure it can be seen that the ductility is most
useful in determining one point on the plastic line, and that point can
be taken at 10 cycles.

Ultimate tensile strength. - The ultimate tensile strength is de-

fined as the maximum load sustalned by a specimen during a tensile test,
divided by the original cross-sectlonal area. For most ductlile mate-
rials the maximum load occurs after appreciable elongation (and reduc-
tion in area). This property must thus be regarded as highly artificial,
since the load and area used in the computation do not occur simulta-
neously. However, 1t is the most commonly cited property used as a
measure of materlal strength; hence it 1s desirable to determine whatever
correlations that can be obtalned as a guide in estimating fatigue
properties.

It has long been known that the ultimate tensile strength can be
used to give some indication of the endurance limit of a material. This
type of correlation has not always been successful, but it does indicate
that this property is related in some way to the behavior at high ecyelic
life. Plots were therefore made of the intercept of the least square
elastic lines at a number of different cyclic lives (figs. 2A
through 174) vérsus ultimate tensile strength for all the materials
investigated. The best correlation obtained was at lO5 cycles as is
shown in figure (20). It can be seen that as a reasonable first approxi-
mation

(Ag) o =0.90 ou (15)

10°
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or

A
(Ao) 105 ou

(Bey)ip5 = —F—— =090 7 (16)

While this relation must obviously be regarded as very approximste -
since it relates two different types of tests by a property that is not
even realistically related to either test -- it serves the very useful
purpose of indicating the approximate location of one point on the
straight line represented by equation (2). Thus, one point on the line
of elastic strain versus cycllc life can be determined by considering

the life at lO5 cycles. The elastic strain range developed at this life

is approximately 90 percent of the elastic strain developed by a stress

equal to the (nominal) ultimate tensile strength of the material.

Tensile fracture stress. - The fracture stress is determined by

dividing the load just prior to fracture by the area meagured Jjust after
fracture. Although the load decreases after the ultimate tensile stress
1s reached, the cross-sectional area decreases more rapidly, thus result-
ing In a progressively increasing "true stress". In all cases, therefore,
the fracture stress is either equal to or greater than the ultimate ten-
sile stress.

Even though the fracture stress takes into account actual areas, and
1s therefore a "true" stress, it is still a somewhat idealized property
because it does not take into account triaxiality and non-uniformity of
stress that develops in a tenslle specimen after "necking" takes place.
In view of the artificiality of this property, together with the fact

that 1t is obtained in a static tensile test whiech does not involve the
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material in either the cyclic hardening or softening that develops in a
fatigue test, 1t can be expected that the utility of this property in
predicting the fatigue behavior will be limited. Since, however, only
approximations are sought, a correlation was attempted for the large
number of materials investigated both in tension and in axial fatigue.
If the tensile test is to be regarded as one-quarter cycle of a
fatigue test, 1t 1s natural to expect that the line of elastic strain
(or corresponding stress) associated with equation (2) intersect the
life N = 1/4 at a stress range which 1s twice the fracture stress.
Figure 21 shows the correlation obtained when the fracture stress is
plotted against the intercept at Nf = 1/4 of the optimized linear rela-
tion between elastic strain and cycliec life on log-log coordinates. The

relation is very nearly linear, indicating that

= (&) .
(Aeel)l/4 = (E)1/4 = 2.5

o
f
- (17)
where of is the fracture stress 1in the uniaxial tenslile test.
Thus equation (17) provides information from which a point on the

elastic line represented by equation (2) can be determined. It is merely

o

necessary to plot 2.5 i? at Nf = 1/4. This relation, together with

equation (16) provides sufficient information to determine the elastic
line of equation (2).
There 1s, however, a difficulty that may arise in trying to use Oa

as a predicting parameter and that occurs when dealing with highly ductile

materials. For such materials, 1t becomes almost Impossible to get a
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good measure of actual load carrying area at the time of failure, and

hence ¢
f’

highly necked down section. For these extremely duectile materials it is

because of the many cracks known to be present throughout the

best not to attempt to use o

£ for predicting a point on the elastic

4
line, but ratherhuse some average slope for the line passing through the
elastic strain range predicted at lO5 cycles from o, The average
slope recommended for these cases 1s -0.1 as will be discussed later.

Approximate relationghip of total strain at lO4 cycles. - Thus far

three relations have been indicated for the determination of the two
straight lines assoclated with the elasgtic and plastlic component of
strain; only one more relation is required for the complete establlishment
of these two lines. The relation that has been found most useful is
based on figure 22 which shows a plot of longitudinal total strain range
versus number of cycles to fallure for the large number of materials
which data are available (ref. 2). It is interesting to observe that

all the curves (except for beryllium) seem to come together at approxi-
mately lO4 cycles, and at a total strain range of approximately 1 percent.
Thus, regardless of material, a total straln range, consisting of the sum
of elastic and plastic strain ranges, of approximately 1 percent will
result in a life of 10,000 cycles. Actually, the relation that is most
useful arises out of a refinement of this observation. A plot of Aﬁel
versus Aep at lO4 cycles 1s shown in figure 23. A straight line does

represent the data fairly well, but the equation of the line is

(e ), = 0069 -0.52(Ae

P10 (18)



- 21 -

instead of

(Be ) 4 =001 - (Ac

P’10 e1)10t
which would result 1f the best relatlon were represented by the sum of
the two strains being equal to 0.0l

Equation (18) thus represents a usable relation for the determina-
tion of the plastic strain range at lO4 cycles when the elastie strain
range is known. Since by equation (2) the elastic strain range versus
cyelle life 1s approximated by a straight line on log-log coordinates,
and since two points on this line can be determined from equations (16)
and (17), equation (18) is adequate for determination of the plastic
straln range required to cause fracture at 104 cycles.

There is a possible difficulty that may arise in using equation (18)
and that 1s when dealing with very high strength materials where the pre-
dicted value of elastic strain range at lO4 cycles approaches or is
greater than 0.0132. When this happens, the error in computing Aep
from equation (18) can be very great. For such cases when the computed
value of Aep 1s less than 0.001 it is felt that some average slope of
the plastic line through the predicted point at 10 cyecles should give
more reasonable results. The average slope recommended for these very
high strength materials is -0.6 as will be discussed later.

Endurance limlt. - The most common definition of the endurance limit

1s the stress at the outermost fibers in an alternating bending test
low which failure does nol occur regardiess of how many cycles are
applied. In practice, however, the endurance limit is taken as a

specific polnt on the Ag - N fatigue curve of a material; for steels
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the polnt is frequently at 106 cycles. Cholce of an arbitrary life is
necesgsary not only because of the practical difflculties of determining
precisely the "knee® of the Ag - l\Tf curve, but also because some mate-
rials do not have well defined "knees®™. Failure occurs at almost any
stress level if the number of cycles of stress application is great
enough. Thus, information on the endurance 1imit makes avallable one
peint on the Ag - Nf curve, elther by impliication as to cycles to fail-

ure, or by direct specification of cyeliec life. Thus if is the

%end

endurance limlt at a 1life of Nen cycles, one point on the line of

d

ic strain range versus life 1s end at N = Nepg, where E 1s

the elastic modulus.

It should be recognlzed, however, that the endurance 1imit specified
as conventional engineering Iinformation frequently refers to data obtained
in alternating bending tests, whereas the discussion here refers to
axlal straining. For the present it may be recognized that since only
gross approximations are desired, the two types of endurance limits may

be used interchangeably by noting from reference 10 that

ten bend

g = 0.65 a4 (19)

end

In the analysis to be discussed the uniaxial endurance limit 1s used
in two different methods. The first method makes use of the assumption
that the line represented by equation (2) is horizontal, that is y = O.
Thus the elastic strain range is a constant over the entire life range,
and since it i1s known at one value of life, it 1s known at all values.

Thus
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or

G=2
Oena (20)

In the second method the polnt at the "knee" of the endurance curve
is used instead of the relation Involving the ultimate tensile strength,
equation (16). The "knee", for numerical purposes to be discussed, is
assumed at 107 cycles. Thus, instead of equation (16), use 1s made of

the relation

2o
() -5 @
10

Equation (21) is then combined with equation (17) to determine the con-
stants in equation (2). Since the determination of the endurance limit
involves considerable fatigue testling, and since the purpose of the
approximations to be discussed hereln is to obtain life estimates from
the most readily determined mechanical propertles, the relations involv-
ing endurance limit must be regarded as secondary to those involving
properties determined from the tensile test alone.

Constant slope values. - Since the purpose of the approximate for-

mulas to be derived is to obtain only estimates of cyelic life, it may
sometimes be sufficient to use slope values of both the elastic and
plastic strain range components as determined from other materials tested
under suitable conditlions. For the plastic component of strain, a slope

of -1/2 has been suggested by Coffin (ref. 8). Figure 24 shows a plot of

N

.
in

{1\\ Nrev ot +1~
N~/ v

the best fit slopes (the same as the exponent )

eg.

ductility for the materials of reference 2. It is seen that most mate-

rials have negative slopes of greater magnitude than -1/2. A better
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"average™ value might be -0.6 if it were desirable to use the same value
for all materials. It is this "average"™ slope value that was recommended
for use when trying to predict the behavior of very high strenéth mate-
rials as was previously discussed.

The slope of the line fitting the elastic coﬁponent of the total
strailn range (the same as the exponent 7t in eq. (2)) was found to
range from -0.06 to -0.16 among the materials analyzed. Where no other
information is available, an average value of slope ¥y = -0.1 may be
assumed, but no use is made of this simplification in this report except
for the cases of very ductile materials where gf cannot be measured
accurately.

Relation involving ductility and endurance limit.

An extremely simple relation was proposed by Langer (ref. 3), which
relates the total strain range and cyclic life where the following
assumptions were made regarding the previously discussed parameters.

a) The plastic strain range is equal to the ductility at a cyelic

life of 1/4 cycle,

b) The plastic exponent is taken as —1/2 for all materials,

¢) The elastic strain component is constant, and is taken as the

elastic range at the endurance limit.

Under these conditiong the resulting equation for total strain range

becomes

end

_1/2 20
£) T TR

ol

Ne = AEP + Dey =35 (N (22)
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Relation involving ductility, ultimate tensile sgtrength and fracture

stress.

The two lines constituting the elastic and plastic components of
strain range can be determined using the tensile data relations involved
in equations (14), (16), (17), and (18). The sum of the two components
then yields the total strain range in terms of cyclic life and prop-
erties determined from the uniaxial tensile test. 1In practice a graphi-
cal procedure proves to be very simple. The line for the elastic com-
ponent is constructed first by establishing the strain range at 1/4 cycle
and 105 cycles from the [raclure stress and ultimate tensile stress
according to equations (16) and (17) or by passing & line of slope -0.1
through the calculated strain at lO5 cycles for materials where Op can-
not be measured. The elastic strain range at 104 cycles is then read
from the predicted straight line. From the elastic strain range the
plastic strain at 104 cycles is determined using equation (18). The
point at 104 cycles is then joined by a straight line to the point at
10 cycles determined by the ductility using equation (14). For the case
where Aep at lO4 is computed to be less than 0.00l, a line of constant
slope -0.6 is passed through the 10 cycle point. The ordinates at se-
lected values of cyclic life are then added to give total strain range.

It is, however, possible to perform the steps analytically pro-
viding relations for M, 1z, G, and y in terms of D, ¢, and Op-

o)

These relations become

- SRS O z
De = Deyy + Dey =% Ng M N (23)
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where
0.9
9 Of
6=20, <E‘) (24)
K
Of
y = - 0.083 - 0.166 log [— (25)
Ou
0.\ /9¢\0- 179 -1/3
M= 0.827D |1 - 82 (E.L*)(—) (26)
%
G\ /00179
z =-0.52 -X1og D+ L1og |1 - 82 [HEL (27)
4 3 E GH

Relation involving ductility, fracture stress and endurance limit.

If an endurance limit 1s available it is, of course, preferable to
use a fatigue property to establish the elastic strain range relation
instead of resorting entirely to the properties from the uniaxial ten-
sile test. 1In this case it is logical to construct the line for elastic
strain range by using the point at the known endurance limit together
with the point at 1/4 cycle determined by the fracture stress. If the
endurance limit is given at 107 cycles, use is then mede of equation (21)
together with equation (17) to construct the elastic strain range line.
However, it should be recognized that the "endurance limit" as considered
here is regarded as a point on the straight line of strain range (or
stress range) versus cyclic life. For materials in which the elastic

curve tends to level off considerably, so that a quoted endurance limit

b

ct
v
]
)
1)

of the curve, it 1s obviovus that use of

the specified endurance limit will yield inaccuracies in the construction

of the elastic line. Hence, caution should be used in applying quoted
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endurance limits unless the life at the endurance limit is also specified,
and it is reasonably certain that the poinf given occurs at the "knee" or
before it in magnitude of cyclic 1life.

Graphically, the procedure for using an endurance limit is identical
to that described previously, except that the point on the elastic line
at 105 cycles debtermined from the ultimate tensile strength is replaced
by the point at the endurance limit. Analytically, the problem is
slightly more complicated because the life at which the endurance limit

is taken, Nend’ must be left as an assignable variable. The formulas

A e an M
+ O i

nanA
v \.4’ l bl FAS 3 ALl
as a literal term. It is thus desirable to derive separate formulas for

specific values of N Those below refer to a value of Nepa = 107

end*®
cf 0.92
G=2.50 (28)
end <0end>
O
vy =-0.013 - 0.13 log ) (29)
Oend
6.2 / 0p \O 39 -1/3
M= 0.827D |1 - 166 <eEn> (30)
Oend
g ol 0. 334
2 = 0.052 - & 1og D+ % 1og 1-166/end £ (31)
4 3 \ B O’end
RESULTS AND DISCUSSION
The availability of cxperimental data on a relatively large number

of materials makes possible a check of the validity of the proposed rela-

tions over a broad range of the variables. It should be recognized, of
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course, that since the relations were derived, in part, from the same

data used to check thelr validity, there exists a bias toward the correla-
tion which cannot be resolved without further data on additional mate-
rials. Since these correlations were arrived at in 1961 (ref. 11) the
authors have tested 6 additional materials. These materials were not
used in obtaining the correlations but are included in this report for
the purpose of checking the predicting methods. The tensile data for
these materials are listed in .able I and the experimental fatigue data
are plotted in figures 25 through 30.

perimental data for two methods

S I Ll 65

Comparisons of predictions with e
are presented along with the least squares, or best fit curves, for the
22 materials investigated. These comparisons are given in figures 2
through 17 and 25 through 30. The "C" lines are the predictions based
on the ductility and endurance limit as described by equation (22). In
assigning a value of endurance limit an extrapolation of the elastic
strain range data to 107 cycles was used and these values are listed in
table I. The "B" lines of these figures represent the predictions by
equations (23) through (27) where only the properties obtained from the
uniaxial tensile test as listed in table I were used. It can be seen
that in general, equation (22) yields conservative values of life for a
given total strain range, while the use of equation (23) in conjunction
with the constants of equations (24) to (27) yield life values that more
closely comply with the data.

A more complete comparison of the two methods is shown in figures 31(a)
and 31(b)} Each of these figures shows the ratio of predicted total strain

range to the experimentally determined value against cyclic life for all
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the materials investigated. For these figures the experimentally deter-
mined total strain range was taken as the sum of the least squares lines
for the elastic and plastic components. Thus the ratios could be taken
at all values of life without regard for specific values at which data
were obtained.

In figure 31b the predictions are based: on equation (22), using an
experimentally determined ductility and endurance limit. The endurance
limits used to obtain figure 31lb were not directly determined, but were
rather as previously mentioned obtained by extrapolation of the total
cycles. Thus the method as evaluated here
is given the benefit of an accurate measure of endurance limit (for the
purpose of correlating the lower life data). In general it is seen that
this method ylelds conservative values of strain for a given life. Where
conservative design is desirable, the method may serve very well, but it
must be recognized that for some materials and in some life ranges the
allowable strain predicted by this method will be as low as 1/4 the
actual value. In addition, the method requires the experimental deter-
mination of an endurance limit in order to correlate the long-life data
at all.

The predictions of figure 3la are based on making use of the duc-
tility, fracture stress, and ultimate tensile strength as determined in
the static uniaxial tensile test. An improvement is obtained relative
to the correlation of figure 3la, although for a given 1ife the predicted
strain is sometimes higher and sometimes lower than the measured strain,

whereas in figure 31b the predicted strain is generally lower. It is
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possible to make the method using tensile data alone predominantly con-
servative by dividing the predicted strain by approximately 1.5; the
result is still an improvement (in the sense that better correlation is
obtained) over the method using equation (22), despite the fact that no
fatigue properties are required to make the analysis.

A final point to be made in comparing the two methodsg is the very
important by-product resulting from the method that fits the elastic
strain range data best as well as the total strain range data. This
enables the designer to get a first approximation to the stress range -
strain range curve which can be used in a stress analysis to obtain a
better approximation to the total strains in a structure than if an
elastic analysis alone were made. This improved value of total strain
range would then result in an even better estimate of life. The predic-
tion based on a horizontal elastic line through the endurance limit
results in an inaccurate representation of the stress-range - strain range
data and hence can only be used for estimating life from the total strain
range, but it cannot aid in the computation of this value.

CONCLUSIONS

The following conclusions are based upon extensive analysis of room
temperature strain-cycling fatigue data for the twenty-two materials
bresented in this paper.

1) The elastic and plastic components of total strain range versus

ne L -~ e s = -~ o = e ,_6
1llile aata measured 1n the lirfe range of L0 to 10

cycles can adequately
be represented by strailght lines on log-log coordinates, for most mate-
rials investigated. The only exceptions were the plastic component of

those materials that are unstable and transform during cycling.
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2) A method was presented which attempts to determine a clearly de-
fined endurance limit from low and intermediate cycle fatigue data. It
was concluded that unless the elastic strain range versus life curve
shows distinct curvature 1n this region, no such clearly defined endur-
ance limit can be obtained and therefore the simple linear relation
which adequately represents the data can be used.

3) A simple method for predicting the fatigue behavior of mate-
rials from thelr uniaxial tensile properties is presented. Predictions
based upon thls method as well as the method of Langer were compared with

Al A
ULl Us

& large number of materials. The results indicate that the
proposed method 1s 1n general an improvement over the Langer method
which has an added disadvantage of requiring an endurance limit. The
proposed method glves a very satisfactory representation of the total
strain range versus life relation from 10 to 108 cycles and has an

added advantage in that it also predicts the stress range-strain range

relation which is useful in the analysis of any cyclicly loaded structure.
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APPENDIX
a1

Some computations involving estimation of endurance limit.

Equations 5 and 6 are both of the form y = a + bx". In practice,
experimental data are available for corresponding values of y and X,
and the problem is to determine the best values of a, b, and n which
will correlate the data according to this equation. There are several
methods available to do this (ref. 12) but unfortunately none involves
a direct plot of y versus x on some coordinate system which permits
the optimum choice of the constants. The method that was therefore used
by the authors is as follows:

a) select a value of the exponent n,

b) plot y versus x5,

c) determine by conventional least squares method the values

of a and b resulting from the best fit straight line
through the data,

d) determine the sultability of the choice of exponent n by
calculating the "standard deviation" (ref. 13), which is a
measure of the average deviation of the data points from the
optimum straight line,

e) repeat the previous 4 steps for a sequence of selected values
of n.

Among the various values of n chosen, that value which yields the
lowest "standard deviation® can be regarded as the best value. Initially,
the spacing between values of n chosen can be quite coarse, but as the

best cholce 1g narrowed down, the spacing can be chosen as fine as
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desired to obtaln the best value of n and the assoclated best values
of a and b. Although these computations can be performed manually,
the avallability of high speed computing machinery greatly reduces the
amount of labor and does not discourage refinements in computation by
choice of closely spaced values of the exponent n.

Figure 32 shows property curves for a hypothetical material. The
solid lines are idealizations of material properties where the endurance
limit 1s taken as zero. Thus, the Ag = A¢ curve shows plastic flow at
all stress levels (although the deviation from the elastic line is very
small in the vicinity of the origin) while the ﬁﬁel - Nf line is per-
fectly straight. Equations for these curves are also given in figure 32.
The circles represent hypothetical "date" points, and fit the assumed
equations exactly. The question to be answered in this illustration is
whether, given the hypothetical data points shown by the circles, the
proper endurance limit (in this case zero) will unambiguously be indi-
cated by the analysis.

Table II shows the results of the computation performed by the method
described for determining the endurance limit from the AEel - Ne  curve
as seen in filg. 32b. The assumed values of the exponent z/d in equa-
tion (5) are shown in column 1 of Table II. For each assumed value of

z/d, equation (5) results in a simple straight line of Ac/E versus

z/d

Ne .+ TUsing standard statistical methods, the "least squares" straight
line was obtained for each assumed value of z/d, the standard devia-
tion of the points from the line i1s indicated in column 2. The standard

deviation is, of course, zero for the value of z/d = - 0.085, since
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this exponent is the one on which the hypothetical points are based, but
it can be seen that the standard deviation is quite small for even con-
siderably erroneous values of z/d. Each "erroneous" value of z/d pro-
duces an "indicated endurance limit", column 4, which compensates for the
error in the choice of z/d, and results in a curve representing equa-
tion (5) that is in close agreement with the data points.

The dotted lines of figure 32(b) indicate the agreement between the
various equations resulting from the least squares fits, and the "data"
points on which they are based. In the range of the "data™ points, in
his case between 10 and 10° cycles, it 1is clear that the choice of
optimum fit is not completely unambiguous. Of course, the "data" here
were taillored to give an exact value of endurance limit of zero, but
small deviations in the "data", so characteristic in fatigue experiments,
could easily make the determination of the endurance limit by this method
quite ambiguous.

Table IIT shows similar computations using the cyclic stress-strain
characteristic of figure 32(a) as the basis for determining the endurance

limit. As before, best results are obtained for 0, but the

Tend =
standard deviations are small for other choices of l/d, and correspond-
ing endurance limits. The degree of fit between the "data" and the various
curves representing other values of l/d are shown in figure 32(a). No
difference can be detected in these curves for the scale used to plot

them.

Further calculations to elucidate the problem are shown in tables IV

and V and figure 33. 1In this case the material is assumed to show an
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endurance limit of 50,000 psi. The governing equations are assumed to
be

0. 246
Ag = 100,000 + 284,000 (Aep) (32)

and

- 0.180
A = Be_, = 100,000 + 300,000 (Ny) (33)

where E = 52.3;106 psi. However, for the present calculation cogni-
zance will be taken of scatter normally characteristic of fatigue data
by arbitrarily displacing the "data" points from the basic equations (32)
and (33). The displacements range between #1 percent <10 %5 percent,
and the exact magnitudes were chosen by use of tables of random numbers.
The "data" points are shown in figure 33 by the circles, and the basic
curves (32) and (33) by the continuous lines. The curves and "data" in
these computations are shown in figure 33 and tables IV and V. In this
case, the "data" are limited to cyclic lives of lO5 cycles. By comparing
the standard deviations in tables IV and V and the dotted curves in fig-
ure 33 (of which only two are shown, to avoid congestion), it can be seen
that considerable ambigulity exists at the optimum endurance limit. The
"data” can be fitted well by curves which vary considerably in endurance
limit.

A final computation is shown in figure 34. The data for the range

up to 105 cycles are here identical to those shown in figure 33 and addi-

tional "data" pointe are

computations are shown in table VI. Here 1t can be seen that the ambiguity

of endurance limit determimation is greatly reduced. Thus, if high cycle
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data are available, the endurance limit can be determined by the method
outlined, but if only low cycle data are available, the method does not
accurately determine the endurance limit.

Although the principles involved and the conclusions of the computa-
tions described above were illustrated by the use of hypothetical datsa,
the author and his co-workers have attempted the procedure on data for
numerous materials which were determined experimentally. The conclusions
drawn were approximately the same: the method requires high-cycle data,
or data in the range where Aﬁel versus Np show distincet curvature, in
order to determine a clearly defined endurance limit. In the absence of
high cycle data, an equation in the form of (2) can adequately represent
the data in the low cycle range (for most materials, up to 10% cycles).
Because of the simplicity of equation (2) it is used in the body of this
paper, with the recognition that it is an approximation that implies the
non — existence of an endurance limit (infinite life), but in practice is
not inconsistent in representing data in the life range of interest
(usually lO6 cycles) even for cases involving endurance limits. For
materials that demonstrate distinct curvature at lives well below
10° cycles, there is no difficulty in replacing equation (2) by its

equivalent (5).
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(STRAIN RANGE)

TAELE I, - MATERTAL PROPERTIES

NUM- MATERIAL YOUNG'S | POISSON'S| TRUE |FRACT- [ULTIMATE |ENDUR-
BER MODULUS, RATIO DUC- TURE STRESS, | ANCE
x10-6 TILITY | STRESS,| KSI ISTRESS,

KSY KSI

1 | 4130 SOFT 32.0 0.290 1.120 {245.0 130.0 45.0
21304 25.0 +340 1.165 1295.0 138.0 40.0
3 | 4340 HARD 28.0 »300 .477 |278.0 213.0 5.0
4 [ 4340 ANNRALED 28.0 +320 570 (174.0 120.0 50.0
S [ 52100 30.0 »290 .118 (323.0 292.0 80.0
& [ 304 ANNEALED 27.0 .270 1.368 |278.0 108.0 40.0
7 {4130 HARD 29.0 +280 .792 [302.0 207.0 70.0
8 | AISI 310 28.0 .300 1.006 ]197.0 93.3 18.0
8 | INCONEL X 31.0 +310 .223 [219.0 176.0 55.0
10 | TITANIUM 6 Al~4VA 17.0 330 .530 [248.0 179.0 70.0
11 | BRRYLLIUM 42.0 .024 .017 47.7 46.9 24.0
12 [AM 350 HARD 26.0 «300 «233 |328.0 276.0 90.0
13 | AM 350 ANNEALED 28.0 +320 -737 |338.0 191.0 55.0
14 (1100 ALUMINUM 10.0 »330  |2.0%0 16.2 5.0
15 | 5456 H311 ALUMINUM 10.0 +330 o424 81.7 57.8 20.0
16 | 2014 T6 ALUMINUM 10.0 »330 .288 9l.4 73.6 25.0
17 | 4130 X-HARD 30.0 +280 .619 |352.8 247.8 80.0
18 {52100 X-HARD 28.0 .280 .01l1 |386.6 362.8 115.0
19 | TITANIUM EA1-2.5 Sn 16.8 .310 .566 (190.0 130.4 80,0
20 | VASCOMAX 300 CVM 27.0 +300 .707 [380.3 295.1 115.0
21 (2024 T4 ALUMINUM 10.0 »300 -402 (103.2 71.8 20.0
22 | 7075 T6 ALUMINUM 10.0 +320 »327 [121.2 89.9 20.0

DESCRIPTION OF MATERYALS NOT LISTED IN REFERENCE 2

| I I

~De=Aey + Ae,

I I I

NOM- | MATERTAL NOMINAL COMPOSITION, CONDITION HARINESS

BER PERCENT

17 | Ars1 4130 SAME HEAT AS IN REF. 2 1600° F; 1/2 HR_IN ARGON, WATER QUENCH | RC 48
{EXTRA HARD) 400° F; 1 HR, AIR COOL

18 | AISI 52100 | SAME HEAT AS IN REF. 2 1520° F; 1/2 HR IN ARGON, OIL QUENCH | RC 61-62
(EXTRA HARD) 400° F, 2 HR, AIR COOL

19 | TrTANTUM C 0.022, F, 0.08, N, 0.014, Al 5.1, Sn 2.5, | ANNRALED BY SUPPLIER RC 31-32
(541, 2.5 8n) [ o, 0,067, Hp 0.0096, T1 REMAINDER

20 | vascomax C 0,03, 81 0.0L, Mn 0.02, 8 0.0065, P 0.004, | SOLUTION ANNEAIRD BY SUPPLIER RC 54-55
300 CVM Mo 5.00, Co 8.94, Ni 18.51, T 0.56, Al 0.0, | 900° F; 1 HR, AIR GOOL

7r 0.008, B 0.00i2, Ce 0.02, Fo REMAINDER

21 | 2024 T¢ AS PER NAVY SPECIFICATION A3 RECETVED RB 94
ALTMINUM QQA-268 CONDITION T

22 | 7075 6 AS PER NAVY SPECIFICATION AS RECEIVED RB 79
ALUMINUM QQA-282 CONDITION T

CS-28438

.00l L
10”

SN Vo S o LI 1o [
(CYCLES TO

0° 10* 108
FAILURE)

Figure 1. - Total strain range as the sum of elastic and plastic components.
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Flgure 4. - Fatlgue behavior of AISI 4340 (hard), material number 3.
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Fatigue behavior of AISI 4340 {annealed), material number 4.
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Flgure 6. - Fatigue behavior of AISI 52100, materlal number S.
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Flgure 7. - Fatigue behavior of 304 ELC (annealed), material number 6.
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Figure 8. - Fatigue behavior of AISI 4130 (hard), material number 7.
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Flgure 10. - Fatlgue behavior of Inconel X, material number 9.
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Flgure 12. - Fatlgue behavior of beryllium, material number 11.
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Figure 14. - Fatlgue behavior of 350 {annealed), material number 13.
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Figure lt. - Fatigue behavior of 1100 alum'num, materlal number 14.
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Figure 16. - Fatigue behavior of 5456 H311 alumlnum, material number 15,
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Figure 17. - Fatigue behavior of 2014 T6 aluminum, material number 16.
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Figure 18. - Intercept of plastic line at 1/4 cycle

1ife as function of ductility.

material identification.
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- Plastic strain range at 1ife of 10 cycles versus ductility.
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Figure 20. - Correlation of stress range
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for material identification.
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Figure 26. - Fatigue behavior of 52100 X-hard RC 62, waterial number 18.
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DUCTILITY AND ENDURANCE LIMIT EQ. 23

Flgure 31. - Ratlos of predicted 1o "least aquares”
total strain ranges versus cycllc lives.
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Flgure 33. - Insensitlvity of curves to constants in equations involving

endurance limits.
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